Strong differentials in $L^{p}$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong LP duality in weighted infinite bipartite graphs

We prove a weighted generalization of Kiinig’s duality theorem for infinite bipartite graphs and a weighted version of its dual.

متن کامل

Strong LP Formulations for Scheduling Splittable Jobs on Unrelated Machines

We study a natural generalization of the problem of minimizing makespan on unrelated machines in which jobs may be split into parts. The different parts of a job can be (simultaneously) processed on different machines, but each part requires a setup time before it can be processed. First we show that a natural adaptation of the seminal approximation algorithm for unrelated machine scheduling [1...

متن کامل

From Weak to Strong LP Gaps for All CSPs

We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxations given by Ω ( logn log logn ) levels of the Sherali-Adams hierarchy on instances of size n. It was proved by Chan et al. [FOCS 2013] (and rece...

متن کامل

STRONG ASYMPTOTICS FOR Lp EXTREMAL POLYNOMIALS OFF A COMPLEX CURVE

Recently, a series of results concerning the asymptotic of the extremal polynomials was established for the case of B = Lp(F,σ), 1 ≤ p ≤∞, where σ is a Borel measure on F; see, for example, [3, 7, 8, 12]. When p = 2, we have the special case of orthogonal polynomials with respect to the measure σ . A lot of research work has been done on this subject; see, for example, [1, 4, 5, 9, 11, 13]. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1966

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-27-1-49-72